The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa.
نویسندگان
چکیده
The opportunistic pathogen Pseudomonas aeruginosa uses intercellular signals to control the density-dependent expression of many virulence factors. The las and rhl quorum-sensing systems function, respectively, through the autoinducers N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone (C(4)-HSL), which are known to positively regulate the transcription of the elastase-encoding gene, lasB. Recently, we reported that a second type of intercellular signal is involved in lasB induction. This signal was identified as 2-heptyl-3-hydroxy-4-quinolone and designated the Pseudomonas quinolone signal (PQS). PQS was determined to be part of the quorum-sensing hierarchy since its production and bioactivity depended on the las and rhl quorum-sensing systems, respectively. In order to define the role of PQS in the P. aeruginosa quorum-sensing cascade, lacZ gene fusions were used to determine the effect of PQS on the transcription of the quorum-sensing system genes lasR, lasI, rhlR, and rhlI. We found that in P. aeruginosa, PQS caused a major induction of rhlI'-lacZ and had lesser effects on the transcription of lasR'-lacZ and rhlR'-lacZ. We also observed that the transcription of both rhlI'-lacZ and lasB'-lacZ was cooperatively effected by C(4)-HSL and PQS. Additionally, we present data indicating that PQS was not produced maximally until cultures reached the late stationary phase of growth. Taken together, our results imply that PQS acts as a link between the las and rhl quorum-sensing systems and that this signal is not involved in sensing cell density.
منابع مشابه
Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.
Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human path...
متن کاملThe P-Type ATPase PA1429 Regulates Quorum-Sensing Systems and Bacterial Virulence
Pseudomonas aeruginosa is becoming an increasingly prevalent pathogen, capable of causing numerous life threatening infections in immunocompromised patients. The three hierarchically arranged quorum sensing (QS) systems, namely las, rhl, and pqs play key roles in coordinating virulence expression in P. aeruginosa. However, the regulatory mechanisms of the pqs system have not been fully elucidat...
متن کاملIdentification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes.
Many bacterial species, including the human pathogen Pseudomonas aeruginosa, employ a mechanism of intercellular communication known as quorum sensing (QS), which is mediated by signalling molecules termed autoinducers. The Pseudomonas Quinolone Signal (PQS) and 2-Heptyl-3H-4-Quinolone (HHQ) are autoinducers in P. aeruginosa, and they are considered important factors in the progress of infectio...
متن کاملRpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. ...
متن کاملQuorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1.
Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 182 10 شماره
صفحات -
تاریخ انتشار 2000